Abstract

A novel dyad composed of a diaminoterephthalate scaffold, covalently linked to a fullerene derivative, is explored as a nanosized charge separation unit powered by solar energy. Its opto‐electronic properties are studied and the charge separation rate is determined. Simulations of the coupled electronic and nuclear dynamics in the Ehrenfest approximation are carried out on a sub 100 fs time scale after photoexcitation in order to gain insights about the mechanisms driving the charge separation. In particular, the role of vibronic coupling and of the detailed morphology are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.