Abstract

Femtosecond transient absorption (TA) is used to investigate population dynamics of electronic states in CdTe/CdSe core/shell nanocrystals (NCs) with varying CdSe shell coverage. Upon CdSe shell growth, the CdTe/CdSe NCs show a gradual evolution of surface passivation toward a quasi-type-II charge separation regime. Our results indicate that ultrafast electron transfer (ET) through the interface of CdTe/CdSe NCs becomes measurable as the CdSe shell approaches the quasi-type-II regime which we experimentally determined to be at 0.4 nm (shell) for a 3.4 nm CdTe core. This work reports the first measurement using femtosecond TA to study the electronic states in CdTe/CdSe NCs and spectroscopically observe the evolution of an ultrafast charge transfer (CT) in such a core/shell system. Time-resolved photoluminescence (PL) spectroscopy is used to study the radiative lifetimes of the CdTe/CdSe NCs. One monolayer CdSe coverage leads to longer-lived PL, which is red-shifted by 140 nm compared to the CdTe core PL. I...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call