Abstract
A first principles local density functional investigation on extended, two-dimensional periodic slab models of the MgO(001) surface is performed, using the linear combination of Gaussian-type orbitals (LCGTO) technique as implemented in the FILMS program package. Stimulated by recent theoretical evidence for a reduced charge separation in MgO(001), a detailed analysis of the charge distribution and its influence on the electrical field above the surface is carried out. Two different methods to quantify the charge separation in the ionic substrate are employed, a local one based on the topological atom approach and a global one derived from the Madelung field of the surface near potential adsorbates. Both procedures lead to a charge separation significantly (10%–20%) below the nominal ionic value of ±2 a.u. A variational atomic orbital analysis is utilized to discuss the origin of the Mg 3s and 3p structures discernible in the crystal orbitals of the MgO slab systems. They are identified as covalent magnesium valence orbital admixtures to the oxygen dominated valence bands in consistence with the reduced charge separation. Their influence on the cohesive energy of crystalline MgO, however, is found to be only 5% (∼0.5 eV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.