Abstract
The renormalization of the electric charge of nanoparticles (small colloids) at infinite dilution immersed in a supporting electrolyte containing molecular ions is studied here using a simple model. The nanoparticles are represented by charged spheres of finite diameter, the anions are assumed to be pointlike, and the cations are modeled as two identical charged points connected by a rigid rod. The static structure of this model system is determined using the reference interaction site model equations with suitable closure relations and the renormalized charges are analyzed employing the dressed interactions site theory approach. It is found that for a wide range of ionic strengths these renormalized charges are clearly dependent on the length of the cations for nanoparticles with negative bare charge, but this dependence is practically negligible for nanoparticles with positive bare charges. In the limit of zero cation length and small nanoparticle charges the standard Derjaguin-Landau-Verwey-Overbeek model renormalization is recovered. A brief account of the structural and thermodynamic properties of the model molecular electrolyte is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.