Abstract

At strong electrostatic coupling, counterions are accumulated in the vicinity of the surface of the charged particle with intrinsic charge Z. In order to explain the behavior of highly charged particles, effective charge Z(*) is therefore invoked in the models based on Debye-Huckel approximation, such as the Derjaguin-Landau-Verwey-Overbeek potential. For a salt-free colloidal suspension, we perform Monte Carlo simulations to obtain various thermodynamic properties omega in a spherical Wigner-Seitz cell. The effect of dielectric discontinuity is examined. We show that at the same particle volume fraction, counterions around a highly charged sphere with Z may display the same value of omega as those around a weakly charged sphere with Z(*), i.e., omega(Z)=omega(Z(*)). There exists a maximally attainable value of omega at which Z=Z(*). Defining Z(*) as the effective charge, we find that the effective charge passes through a maximum and declines again due to ion-ion correlation as the number of counterions is increased. The effective charge is even smaller if one adopts the Debye-Huckel expression omega(DH). Our results suggest that charge renormalization can be performed by chemical potential, which may be observed in osmotic pressure measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.