Abstract

Secondary fragmentations of three synthetic peptides (human alphaA crystallin peptide 1-11, the deamidated form of human betaB2 crystallin peptide 4-14, and amyloid beta peptide 25-35) were studied in both electron capture dissociation (ECD) and electron-transfer dissociation (ETD) mode. In ECD, in addition to c and z. ion formations, charge remote fragmentations (CRF) of z. ions were abundant, resulting in internal fragment formation or partial/entire side-chain losses from amino acids, sometimes several residues away from the backbone cleavage site, and to some extent multiple side-chain losses. The internal fragments were observed in peptides with basic residues located in the middle of the sequences, which was different from most tryptic peptides with basic residues located at the C-terminus. These secondary cleavages were initiated by hydrogen abstraction at the alpha-, beta-, or gamma-position of the amino acid side chain. In comparison, ETD generates fewer CRF fragments than ECD. This secondary cleavage study will facilitate ECD/ETD spectra interpretation, and help de novo sequencing and database searching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call