Abstract
HypothesisSince the discovery of the Hofmeister effect in 1888, the varied propensity of ions to proteins, DNA and other surfaces has motivated research aimed at deciphering the underlying ion specific adsorption mechanism. Experimental and numerical studies have shown that in agreement with Collins' heuristic law of matching water affinity, weakly hydrated (chaotropic) ions adsorb preferentially to hydrophobic surfaces. Here, we show that this preference is driven by expulsion of bound water molecules from the surface by the adsorbing ions. ExperimentsUsing AFM spectroscopy of the force acting between two silica surfaces, we characterize surface charge regulation by adsorbed Na+ and Cs+ ions at different salt concentrations, pH values and temperatures. These data are analyzed in the framework of a recent theory of charge regulation, relating it to change in surface entropy. FindingsUpon binding to the silica, cesium cations expel water molecules from the surface to create additional adsorption sites for more ions. Cs+ adsorption is thus driven by the release of hydrating water molecules and the resulting increased surface entropy. The model indicates that on average, the binding of three cesium cations releases enough water molecules to make room for two additional bound cations. Na+ does not exhibit such behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.