Abstract

AbstractA high level of tunability and control over arrays of quantum dots are key ingredients toward the goal of scalable‐based qubit architectures. Increasing array size simultaneously increases the parameter space and therefore the tuning complexity. The electron reconfiguration behavior of quantum dot arrays isolated from the electron reservoirs is studied experimentally. Isolating a quantum dot array from the reservoirs does not only enable a high degree of control over the tunnel couplings but at the same time drastically simplifies the stability diagrams for small numbers of electrons trapped in the array. Experimental results on double, triple, and quadruple quantum dot arrays are presented and complementary model calculations allow the identification of all transitions observed in the experiment. Highly tunable long‐range transitions are observed in isolated triple quantum dots and evidence of higher‐order cotunneling is found for the quadruple quantum dot array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.