Abstract
AbstractIrreversible chemical reactions are responsible for limited operational lifetime of organic light‐emitting devices (OLEDs). These reactions are triggered by highly reactive polaron pairs present in the emissive layer of OLEDs. Fast recombination of the polaron pairs is, therefore, crucial for slow degradation and high stability of OLED materials. Here, a study of the formation and annihilation of close polaron pairs in binary mixtures of wide bandgap hosts and a series of blue‐phosphorescent Ir(III) complex dopants, including two novel compounds, is reported. OLED devices containing doped light‐emitting layer are fabricated, and their operational lifetimes are estimated. Although inaccessible in solid films, charge recombination kinetics inside the polaron pairs is measured in liquid solutions using nanosecond laser flash photolysis. Multiscale computer simulations are applied to connect experimental results in different media and predict recombination rates in the device, with proper account taken of the inner‐ and outersphere reorganization in nonpolar materials. Predicted rates correlate with measured operational lifetimes, which demonstrates the key role of polaron pairs in the OLED degradation process. The developed methodology is useful for the rational design of novel OLED materials with higher efficiency and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.