Abstract

The discovery of a magnetic-field-induced charge-density-wave (CDW) order in the pseudogap state via nuclear magnetic resonance (NMR) studies has highlighted the importance of “charge” in the physics of high transition-temperature (Tc) superconductivity in copper oxides (cuprates). Herein, after briefly reviewing the progress achieved in the last few years, we report new results of 63,65Cu-NMR measurements on the CDW order and its fluctuation in the single-layered cuprate Bi2Sr2−xLaxCuO6+δ. The NMR spectrum under both in- and out-of-plane magnetic fields above H = 10 T indicates that the CDW replaces the antiferromagnetic order before superconductivity appears, but disappears before superconductivity is optimized. We found that the CDW onset temperature TCDW scales with the pseudogap temperature T*. Comparison between 63Cu and 65Cu NMR indicates that the spin–lattice relaxation process is dominated by charge fluctuations in the doping regions where the CDW appears as well as at the pseudogap end point (T* = 0). These results suggest that charge orders and fluctuations exist in multiple doping regions and over a quite wide temperature range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.