Abstract

We briefly outline the Charge Optimized Many Body (COMB) potential formalism, which enables the molecular dynamics simulation of complex materials structures in which multiple types of bonding (metallic, covalent, ionic and secondary bonding) coexist. We illustrate its capabilities to address critical issues in the area of nuclear fuel. In particular, we look at U, UO2 and the process of oxidation of U. Further, we characterize the mechanical behavior of Zr, representing LWR clad, and explore the effects of oxidation and hydridation on the mechanical response and briefly illustrate the capabilities of COMB simulations of corrosion. Finally, we briefly assess the materials fidelity of the COMB approach by examining the COMB description for the Zr-H system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.