Abstract

The theoretical framework of a general model for the simulation of concentration profiles of electroactive and nonelectroactive species, driven by an electrochemical process under potentiostatic conditions, is presented. Based on this analysis, finite differences simulations are performed to calculate the actual profiles under different experimental conditions. Furthermore, the effect of experimental parameters (diffusion coefficients of the ions of the redox couple or the supporting electrolyte, charge of the different species, etc.) on the concentration profiles is also examined. The results obtained when low and high concentrations of supporting electrolyte are compared aid understanding of the effect of the electrolyte on the measurements. The presented model also underlines the role of supporting electrolyte species when nonspecific techniques are employed to measure the concentration changes produced by electroactive species. On the other hand, if a highly specific technique were used to detect changes in the concentration or concentration gradient of a given species, then it would be possible to estimate the respective profiles of the other species. The simulations suggest that techniques measuring concentration gradients are more sensitive to determining concentration changes than those involving a measurable linearly related to concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.