Abstract

HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K+ channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K+ channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd2+ ions freeze the open–closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd2+ and measure the effect on voltage sensor movement. Cd2+ did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd2+-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open–closed equilibrium, corresponding to a coupling energy of ∼1.3–2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K+ channels, but also much weaker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.