Abstract

Power generation from photovoltaic solar systems contributes to mitigate the problem of climate change. However, the intermittency of solar radiation affects power quality and causes instability in power grids connected to these systems. This paper evaluates the dynamic behavior of solar radiation in an Andean city, which presents rapid power variations that can reach an average of 7.20 kW/min and a variability coefficient of 32.09%. The study applies the ramp-rate control technique to reduce power fluctuations at the point of common coupling (PCC), with the incorporation of an energy storage system. Electric vehicle batteries were used as the storage system due to their high storage capacity and contribution to power system flexibility. The application of the control strategy shows that, with a minimum of five electric vehicle charging stations at the PCC, the rate of change of the photovoltaic can be reduced by 14%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call