Abstract

To elucidate different photoinduced melting dynamics of charge orders observed in quasi-two-dimensional organic conductors $ \theta $-(BEDT-TTF)$_2$RbZn(SCN)$_4$ and $ \alpha $-(BEDT-TTF)$_2$I$_3$ [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene], we theoretically study photoinduced time evolution of charge and spin correlation functions on the basis of exact many-electron wave functions coupled with classical phonons in extended Peierls-Hubbard models on anisotropic triangular lattices. In both salts, the so-called horizontal-stripe charge order is stabilized by nearest-neighbor repulsive interactions and by electron-lattice interactions. In $ \theta $-(BEDT-TTF)$_2$RbZn(SCN)$_4$ (abbreviated as $ \theta $-RbZn), the stabilization energy due to lattice distortion is larger, so that larger quantity of energy needs to be absorbed for the melting of the charge and lattice orders. The photoinduced charge dynamics shows a complex behavior owing to a substantial number of nearly degenerate eigenstates involved. This is related to the high structural symmetry when the lattice is undistorted. In $ \alpha $-(BEDT-TTF)$_2$I$_3$ (abbreviated as $ \alpha $-I$_3$), the lattice stabilization energy is smaller, and smaller quantity of energy is sufficient to melt the charge and lattice orders leading to a metallic phase. The photoinduced charge dynamics shows a sinusoidal oscillation. In $ \alpha $-I$_3$, the low structural symmetry ensures nearly spin-singlet bonds between hole-rich sites, where the spin correlation survives even after photoexcitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call