Abstract

As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.

Highlights

  • The presence of the myelin sheath, a tightly packed multilamellar membrane, is crucial to the functioning of the vertebrate nervous system

  • The result indicates that both forms behave in solution essentially to the protein isolated from nervous tissue and freed from lipid contaminants [8,41], and that there are no large conformational differences between rmC1 and rmC8 in aqueous solution

  • Fine structural details from Raman spectroscopy Raman spectroscopy is based on the inelastic scattering of monochromatic radiation

Read more

Summary

Introduction

The presence of the myelin sheath, a tightly packed multilamellar membrane, is crucial to the functioning of the vertebrate nervous system. Myelin is formed by specialized glial cells in both the central and peripheral nervous systems (CNS and PNS, respectively), and mutations in myelin components or autoimmune attack towards them leads to severe neurological defects. Many of the defects observed in dys- or demyelination can be attributed to potential disruption of the intimate interactions between myelin proteins and the myelin lipid bilayer. The myelin basic protein (MBP) is one of the most abundant proteins in myelin, and present at high concentration in both the CNS and PNS myelin [1,2]. MBP is a peripheral membrane protein, which is reminiscent of intrinsically disordered proteins, when put into aqueous solution [3,4,5]. We have carried out detailed structural analyses on the calmodulin (CaM) complexes of full-length MBP and peptides from the C-terminal CaM interaction site of MBP [7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call