Abstract
We investigate the charge-instabilities of the Hubbard-Holstein model with two coupled layers. In this system the scattering processes naturally separate into contributions which are either symmetric or antisymmetric combinations with respect to exchange of the layers. It turns out that the short-range strong correlations suppress finite wave-vector nesting instabilities for both symmetries but favor the occurrence of phase separation in the symmetric channel. Inclusion of a sizeable long-range Coulomb (LRC) interaction frustrates the q=0 instabilities and supports the formation of incommensurate charge-density waves (CDW). Upon reducing doping from half-filling and for small electron-phonon coupling g the CDW instability first occurs in the antisymmetric channel but both instability lines merge with increasing g. While LRC forces always suppress the phase separation instability in the symmetric channel, the CDW period in the antisymmetric sector tends to infinity ( $q_c\to 0$ ) for sufficiently small Coulomb interaction. This feature allows for the possibility of singular scattering over the whole Fermi surface. We discuss possible implications of our results for the bilayer high-T c cuprates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European Physical Journal B - Condensed Matter
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.