Abstract

The charge injection and transport properties of a high performance semiconducting polymer for organic photovoltaic (OPV) applications, poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), are investigated by time-of-flight (TOF) and dark-injection space-charge-limited current (DI-SCLC) techniques. OPV cells employing PCDTBT are known to possess power conversion efficiency (PCE) exceeding 6% [1,2]. While TOF probes only the hole mobilities of a thick film, DI-SCLC is shown to be useful down to a sample thickness of ∼200nm, which is comparable to thicknesses used in OPV cells. We show that for pristine PCDTBT, the hole mobilities for both thick used in TOF and thin films for DI-SCLC are essentially the same, and they are in the range of 0.4–3.0×10−4cm2/Vs at room temperature. Both poly(3,4-ethylene dioxythioplene) doped with poly(strenesulfonate) (PEDOT:PSS) and molybdenum (VI) oxide (MoO3) form quasi-Ohmic contacts to PCDTBT with better hole injection from MoO3. Furthermore, the Gaussian Disorder Model (GDM) was employed to analyze the hopping transport of PCDTBT thin films. We show that PCDTBT possesses a relatively large energetic disorder (σ) of ∼129meV, which is significantly higher than the σ of poly(3-hexylthiophene) (P3HT) processed under similar conditions. The correlation between σ and OPV device performance is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.