Abstract

Direct charge collection measurements are presented, which prove that the presence of tungsten near sensitive volumes leads to extreme charge collection events through nuclear reactions. We demonstrate that, for a fixed incident particle linear energy transfer (LET), increasing particle energy beyond a certain point causes a decrease in nuclear reaction-induced charge collection. This suggests that a worst-case energy exists for single-event effect (SEE) susceptibility, which depends on the technology, device layout, and the incident ions' fixed LET value. A Monte Carlo approach for identifying the worst-case energy is applied to certain bulk-Si and silicon-on-insulator (SOI) technologies. Simulation results suggest that the decrease in charge collection beyond the worst-case energy occurs because the secondary particles produced from the high-energy nuclear reactions have less mass and higher energy and are therefore less ionizing than those produced by lower-energy reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.