Abstract

Electrostatic phenomena are commonly observed in the processing of solids. However, the working mechanism of electrostatic charge generation for single granules and particularly, their electrostatic equilibria have not been properly understood. In this work, repeated-sliding charging experiments with single granules were investigated for their electrostatic generation particularly from the perspective of triboelectrification equilibrium. Factors including granule length-ratio, sliding face shape, sliding times, sliding area, sliding velocity, front-facing edge, and sliding-plate inclined-angle were found to have an obvious effect on granule charge generation. Length-ratio and sliding area have significant effects as the granules evolved toward an equilibrium state. Equilibrium charge is suggested as a variable expressing the charging propensity of the material. In addition, under the same working conditions, a semi-cylindrical granule generates greater charge than a rectangular granule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call