Abstract

We study a model of strongly correlated electrons on the square lattice which exhibits charge frustration and quantum critical behavior. The potential is tuned to make the interactions supersymmetric. We establish a rigorous mathematical result which relates quantum ground states to certain tiling configurations on the square lattice. For periodic boundary conditions this relation implies that the number of ground states grows exponentially with the linear dimensions of the system. We present substantial analytic and numerical evidence that for open boundary conditions the system has gapless edge modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call