Abstract

Fractional charge may arise when fermionic zero modes exist in a topological background field. In biased bilayer graphene (BBLG), the bias plays the role of the nontrivial background field. When semi-infinite BBLG with a zigzag edge is used, the dynamics induces an odd number of zero-energy modes, which, together with the conjugation symmetry between positive- and negative-energy states, are the requisite conditions for fractionalization. Exploiting the trigonal interaction to isolate a given zero-energy mode on the zigzag edge, we consider extended and localized modes (the latter being obtained from a localized wavepacket generated by prior irradiation of the sample with an electromagnetic vortex). The valley degeneracy is lifted by a layer asymmetry, while an edge-induced spin polarization breaks the spin degeneracy. We describe scenarios for the detection of charge- edge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call