Abstract
Charge-exchange states, the so-called “pigmy” resonances, which are below the giant Gamow–Teller resonance, have been studied in the self-consistent theory of finite Fermi systems. Microscopic numerical calculations and semiclassical calculations are presented for nine tin isotopes with the mass numbers A =112, 114, 116, 117, 118, 119, 120, 122, and 124, for which experimental data exist. These data have been obtained in the Sn(3He,t)Sb charge-exchange reaction at the energy E(3He) = 200 MeV. The comparison of calculations with experimental data on the energies of charge-exchange resonances gives the standard deviation δE < 0.40 MeV for microscopic numerical calculations and δE < 0.55 MeV for calculations by semiclassical formulas, which are comparable with experimental errors. The strength function for the 118Sn isotope has been calculated. It has been shown that the calculated resonance energies are close to the experimental values; the calculated and experimental relations between heights of pygmy resonance peaks are also close to each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.