Abstract
Electric vehicles are environmentally friendly and more efficient than conventional combustion vehicles. However, from the point of view of energy vectors, they may use energy produced by less efficient and more polluting means. In this paper, an applicative methodology is used to develop a charging equalizer for an electric vehicle that makes it possible to efficiently use the energy produced by a 350 W photovoltaic panel to intelligently charge the five batteries of the vehicle. In addition, using a quantitative methodology, an analysis of the different physical and electrical parameters obtained by a series of sensors installed in the vehicle is presented, and the efficiency of the system is determined. Different routes were travelled within the city of Cuenca with and without the load equalization system, which made it possible to determine an increase in vehicle efficiency of up to 27.9%, equivalent to an additional travel distance of approximately 14.35 km. This is a promising result, since with small investments in solar panels and electronic materials, the performance of low-cost electric vehicles can be significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.