Abstract

Charge dynamics in an ultra-cold setup involving a laser dressed atom and an ion is studied here. This transfer of charge is enabled through molecular Rydberg states that are accessed via a laser. The character of the charge exchange crucially depends on the coupling between the electronic dynamics and the vibrational motion of the atoms and ion. The molecular Rydberg states are characterized and a criterion for distinguishing coherent and incoherent regimes is formulated. Furthermore the concept is generalized to the many-body setup as the ion effectively propagates through a chain of atoms. Aspects of the transport such as its direction can be controlled by the excitation laser. This leads to new directions in the investigation of hybrid atom-ion systems that can be experimentally explored using optically trapped strontium atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call