Abstract

The charge of natural gas adsorption storage systems is studied numerically, With emphasis given to the impact on its dynamics of intraparticle diffusional resistances to mass transport. Besides adsorption kinetics and thermal effects, the simulation model takes into account both mass transport inside the adsorbent and hydrodynamics of flow through the packed bed. Numerical results are presented for change with methane of a 50 liter cylindrical reservoir, filled with hypothetical adsorbents with diffusional time constants in the range 10−3 s1D/Rp2 ≤ ∞. and with the adsorption equilibrium curve of a commercially available activated carbon with a good adsorptive storage capacity. An attempt is made to assemble the charge histories for different values ofD/Rp2 , in a single cure by using a modilied time scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.