Abstract

Within the framework of the fermion-spin theory, the charge transport in the doped Mott insulators on a honeycomb lattice is studied by taking into account the pseudogap effect. It is shown that the conductivity spectrum in the low-doped regime is separated by the pseudogap into a low-energy non-Drude peak followed by a broad mid-infrared band. However, the decrease of the pseudogap with the increase of doping leads to a shift of the position of the mid-infrared band towards the low-energy non-Drude peak, and then the low-energy Drude behavior recovers in the high-doped regime. The combined results of both the doped honeycomb-lattice and square-lattice Mott insulators indicate that the two-component conductivity induced by the pseudogap is a universal feature in the doped Mott insulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.