Abstract

The electric potential distribution induced on the surface of an aerodynamic plasma actuator, operating by means of a surface dielectric barrier discharge (DBD), has been studied both numerically and experimentally. Three actuators made with three different dielectric materials (Teflon, Plexiglas, and glass) have been used. The geometric configuration of the three actuators is the same one. An electrode pair separated by a 2 mm thick dielectric sheet constitutes the DBD actuator. The exposed high voltage electrode has been fed by a 5 kHz a.c. electrical signal. Voltage values between 7.5 and 15 kVp have been used. Measurements of the distribution of the electrical potential in the dielectric surface, generated by the charge deposited on it, have been done. Numerical simulations allowed to evaluating the charge distribution on the dielectric surface. The discharge has been switched off after positive and negative plasma currents. The measurements have been carried out after both phases. The potential distribution is always positive. The charge build up takes place several centimeters downstream of the upper electrode for an extension broader than that of the plasma on the dielectric surface. The charge distribution strongly depends on the switching off phase and is heavily affected by the dielectric material. In order to evaluate the discharge structure and the extension of the plasma, images have been taken also.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.