Abstract

According to first-principles calculation, we study the charge distribution of Li-doped few-layer (1-3 layers) MoS2 and compare it with the results of graphene and BN. It is found that the stable adsorption sites of Li are the top (Mo) site for MoS2 layer, and the hexagonal center for graphene and BN layers. Band structures of pristine MoS2 show that single-layer MoS2 is a direct band gap semiconductor while few-layer MoS2 is an indirect one. As MoS2 is doped, the Fermi level will shift to the conduction band, indicating a charge transfer between Li and MoS2. The charge transfer takes place mostly between Li and the topmost MoS2 layer, which is very similar to that happening between graphene and BN. However, the second and third layer of MoS2, which are far from Li, can acquire about 10% of transferred charges. In contrast, the second and third layer obtain no more than 2% of charges for graphene and BN. Based on the electrostatic theory, we derive for both double and triple layers the formulas of electrostatic energy, which show clearly that only charge transfer between Li and the topmost layer will give the lowest electrostatic energy. Moreover, we calculate the work functions of pristine MoS2, graphene and BN, and find that, despite similar work functions of MoS2 and BN, the larger band gap of BN will make charge transfer between Li and BN harder. The analyses of electrostatic energy and work function show that the charge distribution is dominated by both interlayer electrostatic interaction and work function of material. It is expected that the above results could be helpful for doping layered structures and designing devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call