Abstract

By using first-principles density functional theory, we investigate the charge distribution of a potassium-doped layered combined system of graphene and hexagonal boron nitride. Two configurations of potassium-doped hexagonal boron nitride layers on graphenes and the reverse geometry of graphenes on hexagonal boron nitride layers are considered. We find that the charge distribution exhibits different features in these two situations. In the former case, the outmost hexagonal boron nitride layer cannot screen the external charges offered by potassium atom completely and most of the transferred charges reside on the two bounding layers. In contrary, the outmost graphene layer near the potassium atom can accept almost all of the transferred charges and only a few of them stay at interior layers in the latter case. A more amazing result is that the characteristics of charge transfer are independent of the number of hexagonal boron nitride layers and graphenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.