Abstract

We propose a theoretical description of the charge distribution and the contact resistance in coplanar organic field-effect transistors (OFETs). Based on the concept that the current in organic semiconductors is only carried by injected carriers from the electrodes, an analytical formulation for the charge distribution inside the organic layer was derived. We found that the contact resistance in coplanar OFETs arises from a sharp low-carrier-density zone at the source/channel edge because the gate-induced channel carrier density is orders of magnitude higher than the source carrier density. This image is totally different from the contact resistance in staggered OFETs, in which the contact resistance mainly originates from the resistance through the semiconductor bulk. The contact resistance was calculated through charge-distribution functions, and the model could explain the effect of the gate voltage and injection barrier on the contact resistance. Experimental data on pentacene OFETs were analyzed using the transmission-line method. We finally noticed that the gate-voltage-dependent mobility is a critical factor for proper understanding of the contact resistance in real devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.