Abstract

AbstractThe effective utilization of regenerative power generated by trains has attracted the attention of engineers due to its promising potential in energy conservation for electrified railways. Charge control by wayside battery batteries is an effective method of utilizing this regenerative power. Wayside batteries requires saving energy by utilizing the minimum storage capacity of energy storage devices. However, because current control policies are rule‐based, based on human empirical knowledge, it is difficult to decide the rules appropriately considering the battery's state of charge. Therefore, in this paper, we introduce reinforcement learning with an actor‐critic algorithm to acquire an effective control policy, which had been previously difficult to derive as rules using experts’ knowledge. The proposed algorithm, which can autonomously learn the control policy, stabilizes the balance of power supply and demand. Through several computational simulations, we demonstrate that the proposed method exhibits a superior performance compared to existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.