Abstract

A charge detection mass spectrometer (CDMS) with a limit of detection of 30 elementary charges (e) for a single ion is described. The new CDMS consists of an electrospray source coupled to a dual hemispherical deflection analyzer (HDA) followed by a modified cone trap incorporating an image charge detector. Ions are energy selected by the dual HDA prior to entering the trap. The fundamental oscillation frequency of the trapped ion is extracted by a fast Fourier transform (FFT). The oscillation frequency and kinetic energy provide the m/z. The magnitude of the FFT at the fundamental frequency is proportional to the charge. Simulations indicate that the charge is measured with an average uncertainty of 3.2 e. The mass of each ion is obtained from the m/z and the charge. Mass distributions have been measured for bovine serum albumin (BSA). The BSA ions were trapped for up to 1139 cycles. BSA monomer and multimer ions are evident in the measured mass distribution. The width of the monomer mass distribution (14kDa) is consistent with the predicted uncertainty in the charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.