Abstract

Intact noncovalent complexes were studied in the gas phase using negative ion nano-ESI mass spectrometry. Among various noncovalent systems studied in the gas phase, the interaction of DNA strands with peptide nucleic acids (PNAs) presents a strong interest as biologically relevant systems. PNAs originally described by Nielsen are used as DNA mimics as possible medical agents by imprisoning DNA single strands into stable noncovalent complexes. Two types of PNAs were investigated in the PNA/DNA multiplex: the original Nielsen's PNA and a modified backbone PNA by the introduction of syn- and anti-(aminoethyl)thiazolidine rings. We first investigated the stoichiometry of PNA/DNA multiplexes formed in solution and observed them in the gas phase via qualitative kinetics of complementary strand associations. It resulted in observing PNA2/DNA triplexes (ts) as the multiply deprotonated species, most stable in both the solution and gas phase. Second, charge-dependant decompositions of these species were undertaken under low-energy collision conditions. It appears that covalent bond cleavages (base releasing or skeleton cleavage) occur from lower ts charge states rather than ts unzipping, which takes place from higher charge states. This behavior can be explained by considering the presence of zwitterions depending on the charge state. They result in strong salt-bridge interactions between the positively charged PNA side chain and the negatively charged DNA backbone. We propose a general model to clearly display the involved patterns in the noncovalent triplex decompositions. Third, the relative stability of three PNA2/DNA complexes was scrutinized in the gas phase by acquiring the breakdown curves of their ts(6-) form, corresponding to the ts unzipping. The chemical structures of the studied PNAs were chosen in order to evidence the possible influence of backbone stereochemistry on the rigidity of PNA2/DNA complexes. It provided significantly different stabilities via V(m) measurements. The relative gas-phase stability order obtained was compared to that found in solution by Chassaing et al., and shows qualitative agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.