Abstract
Magnetic topological semimetals present open questions regarding the interplay of crystal symmetry, magnetism, band topology, and electron correlations. Ln${\mathrm{Sb}}_{x}{\mathrm{Te}}_{2\text{\ensuremath{-}}x\text{\ensuremath{-}}\ensuremath{\delta}}$ (Ln denotes Lanthanide) is a family of square-net-derived topological semimetals that allows compositional control of band filling, and access to different topological states via an evolving charge density wave (CDW) distortion. Previously studied Gd and Ce members containing a CDW have shown complex magnetic phase diagrams, which implied that spins localized on Ln interact with the CDW, but to this date no magnetic structures have been solved within the CDW regime of this family of compounds. Here, we report on the interplay of the CDW with magnetism in ${\mathrm{NdSb}}_{x}{\mathrm{Te}}_{2\text{\ensuremath{-}}x\text{\ensuremath{-}}\ensuremath{\delta}}$ by comparing the undistorted square net member ${\mathrm{NdSb}}_{0.94}{\mathrm{Te}}_{0.92}$ with the CDW-distorted phase ${\mathrm{NdSb}}_{0.48}{\mathrm{Te}}_{1.37}$, via single-crystal x-ray diffraction, magnetometry, heat capacity, and neutron powder diffraction. ${\mathrm{NdSb}}_{0.94}{\mathrm{Te}}_{0.92}$ is a collinear antiferromagnet with ${T}_{N}\ensuremath{\sim}2.7\phantom{\rule{4pt}{0ex}}\mathrm{K}$, where spins align antiparallel to each other, but parallel to the square net of the nuclear structure. ${\mathrm{NdSb}}_{0.48}{\mathrm{Te}}_{1.37}$ exhibits a nearly fivefold-modulated CDW (${q}_{\text{CDW}}=0.18$), isostructural to other Ln${\mathrm{Sb}}_{x}{\mathrm{Te}}_{2\text{\ensuremath{-}}x\text{\ensuremath{-}}\ensuremath{\delta}}$ at similar $x$. ${\mathrm{NdSb}}_{0.48}{\mathrm{Te}}_{1.37}$ displays more complex magnetism with ${T}_{N}=2.3\phantom{\rule{0.28em}{0ex}}\mathrm{K}$, additional metamagnetic transitions, and an elliptical cycloid magnetic structure with ${q}_{\text{mag}}=\ensuremath{-}0.41{\mathrm{b}}^{*}$. The magnitudes of ${q}_{\text{CDW}}$ and ${q}_{\text{mag}}$ exhibit an integer relationship, $1+2{q}_{\text{mag}}={q}_{\text{CDW}}$, implying a coupling between the CDW and magnetic structure. Given that the CDW is localized within the nonmagnetic distorted square net, we propose that conduction electrons ``template'' the spin modulation via the Ruderman-Kittel-Kasuya-Yosida interaction.
Full Text
Topics from this Paper
Charge Density Wave
Spin Modulation
Collinear Antiferromagnet
Magnetic Structure
Topological Semimetals
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Physical Review B
Aug 11, 2022
Physical Review B
Apr 5, 2023
Acta Physica Sinica
Jan 1, 2022
Advanced Functional Materials
Mar 3, 2022
Communications Materials
May 11, 2022
Physical Review X
Sep 3, 2021
Nature Physics
Apr 22, 2019
arXiv: Superconductivity
Aug 24, 2018
Physical Review B
May 15, 1990
Physical review letters
Jul 29, 2022
Matter
Oct 1, 2020
Journal of Superconductivity and Novel Magnetism
Dec 21, 2022
Physica Scripta
Aug 1, 1988
Dec 31, 1991
Physical Review Materials
Physical Review Materials
Nov 27, 2023
Physical Review Materials
Nov 22, 2023
Physical Review Materials
Nov 20, 2023
Physical Review Materials
Nov 17, 2023
Physical Review Materials
Nov 16, 2023
Physical Review Materials
Nov 16, 2023
Physical Review Materials
Nov 16, 2023
Physical Review Materials
Nov 15, 2023
Physical Review Materials
Nov 14, 2023
Physical Review Materials
Nov 14, 2023