Abstract
A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene—a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC=232±5 K, which is higher than the bulk TC=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.