Abstract

AbstractApparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility and protection of trapped charge carriers from recombination by a donor–acceptor phase separation until re‐emission from these deep states. In order to clarify which mechanism is dominant temperature‐ and illumination‐dependent charge extraction measurements are performed under open circuit and short circuit conditions at poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PC61BM) and PTB7:PC71BM (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]) solar cells in combination with current–voltage characteristics. It is shown that the charge carrier density n dependence of the mobility μ and the recombination prefactor are different for P3HT:PC61BM at temperatures below 300 K and PTB7:PC71BM at room temperature. Therefore, in addition to μ(n), a detrapping limited recombination in systems with at least partial donor–acceptor phase separation is required to explain the high recombination orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.