7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/t-ed.1972.17590
Copy DOIPublication Date: Dec 1, 1972 | |
Citations: 31 |
An analysis of charge transfer based on the approach has been made for charge-coupled devices (CCD's). A general closed-form equation for the charge transfer efficiency has been obtained that includes the major mechanisms of 1) charge-gradient induced drift, 2) thermal diffusion, 3) an external fringing field, and 4) charge loss due to traps or recombination. When the charge loss and fringing field terms are neglected, the results are in close agreement with the numerical solutions by Strain and Schryer. With the fringing field term included, the closed-form solution compares well with the numerical results by Heller, Chang, and Lo. The effect of charge loss on the transfer efficiency is studied and the temperature dependence of the efficiency, including the temperature dependent surface mobility, is discussed. The effect of a fat zero on the diminution of a digital one is discussed with and without charge loss to surface states. It is believed that the charge-control approach not only simplifies the mathematics involved, but also provides practical charge-coupled device and circuit design guides.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.