Abstract
Microparticle adhesion influenced by electrostatic charge has been a significant research interest for over past three decades or so in a wide spectrum of areas of interest from manufacturing (electrophotography, powder technology, metallurgy, and semi-conductor manufacturing) to natural phenomena (desert sandstorms and northern lights (auroras)). However, over the years, as a result of the strong discrepancies between the experimental adhesion measurements data and theoretical predictions, some key issues regarding the contributors of adhesion forces in charged microparticles and the nature of surface charge distribution still remain unresolved. In the current work, a non-contact ultrasonic approach is presented and employed for understanding the nature of charge distribution on a single microparticle and determining the effect of electrostatic charge on its adhesion in a non-invasive manner. From the vibrational spectra of the charged particle response to the ultrasonic substrate oscillations under various electrostatic loading conditions, three distinct shifting patterns of vibrational (rocking) resonance frequencies are observed for each level of applied substrate surface voltage, implying an un-symmetric force field on the particle, thus depicting non-uniform non-symmetric surface charge distribution on its surface. Also, a simple mathematical model was presented and employed for predicting the equivalent bulk charge on a single microparticle (toner) from resonance frequency shifts. In summary, it is found that the charge levels reported here are consistent with the previously published data, and it is demonstrated that, in a non-invasive manner, non-uniform charge distribution on a single microparticle can be observed and its total charge can be predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.