Abstract

Chalcogenides have been viewed as important conversion-type Mg2+ -storage cathodes to fulfill the high volumetric energy density promise of magnesium (Mg) batteries. However, the low initial Columbic efficiency and the rapid capacity degradation remain challenges for the chalcogenide cathodes, as the clear Mg2+ -storage mechanism has yet to be clarified. Herein, we illustrate that the charge storage mechanism of the Cu2-x Se cathode is a reversible displacement reaction along with a polyselenide (PSe) mediated solution process of anion-compensation. The unique anion redox improves charge storage, while the dissolution of PSe also leads to performance degradation. To address this issue, we introduce Mo6 S8 into the Cu2-x Se cathode to immobilize PSe, which significantly improves performance, especially the reversible capacity (from 140 mAh g-1 to 220 mAh g-1 ). This work provides inspiration for the modification of the Mg2+ -storage cathode, which is a milestone for high-performance Mg batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.