Abstract
An n-SOI microdosimeter which has been proposed as a device for predicting the occurrence of single event effects in semiconductor electronics in the high-energy, mixed heavy ion space radiation environment has been investigated to better understand the charge collection geometry and charge collection mechanisms. Ion beam induced charge collection studies using 20 MeV 12C ions, 5.5 MeV 4He ions, and 2 MeV H ions were carried out, and the effects of different bias conditions, angles of ion incidence, and coincidence analysis were observed to understand the sensitive volume geometry. The energy response of the n-SOI microdosimeter has been observed to exhibit an over-response of 56%, 113%, and 23% for the above ions compared to expected energy depositions calculated using SRIM 2008. No relationship between particle LET AU: Please provide spelling for “LET” and the enhance energy response was apparent. A comparison of experimentally measured and simulated spectra suggest a cylindrical charge collection geometry despite the physical rectangular parallelepiped geometry of the p-i-n diode. This was supported by observing the response of the microdosimeter to ions at oblique ion incidence. A simplified model of diffusion charge collection found that diffusion charge collection contributes to the low-energy tail observed in experimental spectra, but does not account for the observed enhanced energy response. This supports the current theory that the enhanced energy response is a result of a displacement current produced when charge carriers in the substrate induce charge in the SOI layer due to the parasitic capacitance of the buried SiO2 insulating layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.