Abstract

The planned luminosity upgrade of the Large Hadron Collider at CERN (Super-LHC) will provide a challenging environment for the tracking and vertexing detector systems. With a proposed nearly 10-fold luminosity increase to 1035 cm2 middot s-1, the innermost devices will have to be able to withstand a hadron dose on the order of 1times1016 1 MeV neutron equivalent per square centimeter over the anticipated five year lifetime of the experiments. Planar, segmented silicon detectors with n-strip readout are one of the radiation tolerant technologies under consideration for use for the Super-LHC tracking detectors in either pixel or strip geometries. This paper details measurements made with n-strip (n-in-p) and p-strip (p-in-n) planar devices that have been irradiated to doses as high as 1times1016 neq cm-2 with reactor neutrons and fast protons. The doses under study cover the expected range of final fluences for the different tracking systems of the ATLAS and CMS experiments at the Super-LHC. The charge collection measurements have been carried out using analogue, high-speed (40 MHz) electronics and a Strontium electron source. These measurements show that p-in-n sensors are not radiation tolerant enough for the requirements of the micro-strip detectors at the SLHC; whereas, the charge collection properties exhibited by the n-in-p strip devices may be sufficient for all tracker regions (pixels and strips) of the SLHC assuming that appropriate low noise and threshold readout electronics are designed and adequate bias voltage can be routed to the sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call