Abstract

Some features of charge-changing processes, namely, electron capture (EC) and electron loss (EL), are considered for heavy many-electron ions colliding with neutral atoms in a wide range of ion energy E = 10 keV/u–100 GeV/u. The discussion is based on cross-section calculations performed by available computer codes, namely, CAPTURE, DEPOSIT and RICODE. The RICODE (Relativistic Ionization CODE), which provides calculation of single-electron loss cross sections in the relativistic energy regime, was recently created on the basis of the relativistic Born approximation and is described in the Appendix A. In addition, a semi-empirical formula for single-electron loss cross sections is suggested based on properties of the Born approximation and numerical calculations by the RICODE program. To cover also the low and intermediate collision energies, EL cross sections are obtained by the recently created DEPOSIT code which provides calculation of single- and multiple-electron as well as the total cross sections. Based on the results obtained by these codes, recommended capture and loss cross sections for heavy ions like xenon, uranium and lead ions colliding with neutral atoms are presented over a wide energy range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.