Abstract

The trapping of charge carriers at defects on surfaces or grain boundaries is detrimental for the performance of perovskite solar cells (PSCs). For example, it is the main limiting factor for carrier lifetime. Moreover, it causes hysteresis in the current-voltage curves, which is considered to be a serious issue for PSCs' operation. In this work, types of surface defects responsible for carrier trapping are clarified by a comprehensive first-principles investigation into surface defects of tetragonal CH3NH3PbI3 (MAPbI3). Considering defect formation energetics, it is proposed that a Pb-rich condition is preferred to an I-rich one; however, a moderate condition might possibly be the best choice. Our result paves the way for improving the performance of PSCs through a rational strategy of suppressing carrier trapping at surface defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.