Abstract

The results of the measurements of electrical and Hall resistivities on polycrystalline PbS films doped with iodine obtained through hydrochemical deposition are presented. The analysis of the temperature dependence of resistivity points out the crossover from the hopping mechanism due to thermal delocalization in the impurity band to the variable range hopping mechanism. The increase in the iodine content in the films leads to an increase in the impurity ionization energy. It has been established that the temperature dependence of resistivity over a wide temperature range obeys the inverse Arrhenius law, which is characteristic of disordered polycrystalline films with different sizes and orientations of crystallites relative to the substrate, as confirmed by AFM topography, Raman spectra and X-ray diffraction measurements. We found that the type of charge carrier changes from electrons to holes with an increase in the iodine content. Additionally, for a wide range of iodine doping, the concentration of charge carriers is low, indicating the possible occurrence of a self-compensation mechanism due to the formation of impurity defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.