Abstract

Electronic structure methods are combined into a multiscale framework to investigate the electronic transport properties of recently synthesized pristine and nitrogen-doped graphene nanowiggles and their heterojunctions deposited on a substrate. Real-space Kubo-Greenwood transport calculations reveal that charge carrier mobilities reach values up to 1000 cm2 V−1 s−1 as long as the amount of substrate impurities is sufficiently low. Owing to their type-II band alignment, atomically precise heterostructures between pristine and N-doped graphene nanowiggles are predicted to be excellent candidates for charge carrier separation devices with potential in photoelectric and photocatalytic water splitting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call