Abstract

AbstractWe present data on the transport of charge carriers in the organic semiconductor tetracene. Comparative measurements by time-of-flight (TOF) spectroscopy and measurements in field-effect transistor (FET) geometry reveal hole mobilities of about 1 cm2/Vs. Whereas for FETs only hole transport can be detected, from TOF a strong dispersive transport for negative charge carriers is observed. This observation is mainly caused by deep-level trapping of electrons. By fitting the temperature dependent hole mobility to a model of multiple-trapping and release of charge carriers the trap energy and the relative trap density can be adjusted to 130 meV and 5·10-3, respectively. Comparative chemical and structural analysis of inhomogeneities show that the traps affecting the transport are mainly caused by chemical defects rather than by structural imperfections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.