Abstract
We have investigated the complex ac conductivity of for , temperatures and frequencies . In addition, results from dc measurements are presented. From the frequency dependence of the complex conductivity we find hopping of Anderson-localized charge carriers as the dominant transport process in certain temperature and composition ranges. We deduce that, while Anderson localization is not the driving mechanism for the metal-insulator transition observed in this compound, it is responsible for the high-resistivity regions observed at low doping levels and low temperatures. The results indicate a polaronic nature of the charge carriers. From the temperature dependence of the ac conductivity and the magnetic permeability, deduced in the skin-effect-dominated regime, various phase transition temperatures have been determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.