Abstract
Interference of the ballistic charge carriers in one-dimensional (1D) rings formed by two quantum wires in the self-ordered silicon quantum wells was investigated for the first time. The charge carrier transmission coefficient, which is dependent on the carrier energy, is calculated as a function of the length and modulation depth of the parallel quantum wires. The wires can be linked to the two-dimensional reservoirs either by the common source-drain system or by the quantum point contacts. It is predicted that the conductance of a 1D ring in the first case is four times higher than in the second due to the carrier interference. The calculated dependences manifest themselves in the conductance oscillations observed in the 1D silicon rings upon varying the source-drain voltage or the external magnetic field. The results obtained made it possible to design an Aharonov-Bohm interferometer based on a 1D silicon ring in the weak localization mode; its characteristics are demonstrated in the studies of the phase coherence in the tunneling of single charge carriers through the quantum point contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.