Abstract

Triplet state formation after photoexcitation of low-bandgap polymer/fullerene blends has recently been demonstrated; however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation, and triplet state formation in low-bandgap polymer PBDTTT-C/PC60BM bulk heterojunction photovoltaic blends by a combination of fs−μs broadband vis-NIR transient absorption (TA) pump–probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence, indicating nongeminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond time scale. Surprisingly, the carrier population increased again on the ns−μs time scale. We attribute this to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.